松鼠乐园 松鼠乐园
  • 注册
  • 登录
  • 首页
  • 快捷入口
    • Vue
    • Tensorflow
    • Springboot
    • 语言类
      • CSS
      • ES5
      • ES6
      • Go
      • Java
      • Javascript
    • 工具类
      • Git
      • 工具推荐
    • 服务器&运维
      • Centos
      • Docker
      • Linux
      • Mac
      • MySQL
      • Nginx
      • Redis
      • Windows
    • 资源类
      • 论文
      • 书籍推荐
      • 后端资源
      • 前端资源
      • html网页模板
      • 代码
    • 性能优化
    • 测试
  • 重大新闻
  • 人工智能
  • 开源项目
  • Vue2.0从零开始
  • 广场
首页 › 人工智能 › 零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

迦娜王
3年前人工智能
608 0 0

原作:Radu Raice

安妮 编译自 Medium

量子位 出品 | 公众号 QbitAI

这篇文章颇!具!人!气!

软件工程专业的学生Radu Raice近日发表了文章《Want to know how Deep Learning works? Here’s a quick guide for everyone》,不到两天时间就在外网《Medium》上收获了6.9k个赞。

零基础没关系,Raice通过用深度学习搭建预测机票价格模型,教你直观理解深度学习的工作原理。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

Radu Raice

入学测验

莫急莫急,想学习深度学习的工作原理,你得先通过一个入学测试才行。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

Q1:你了解监督学习吗?

监督学习应用了包含输入和期望输出的标记数据集。

用监督学习训练AI时,我们需要给它输入并告诉它期望输出值。当AI输出有误时,它将重新调整计算。这个过程在数据集中反复进行,直到AI不再犯错。

Q2:你了解无监督学习吗?

用无监督学习训练数据时,你让AI对数据进行分类。

比如用AI预测网店的销量,没有标记了输入和输出的数据集供它使用,它将创造自己的输入数据分类,告诉你哪种类型的用户更可能购买哪些不同的产品。

比如用AI预测网店的销量,没有标记了输入和输出的数据集供它使用,它将创造自己的输入数据分类,告诉你哪种类型的用户更可能购买哪些不同的产品。

关于机器学习/深度学习的入门知识,量子位近期还有这些文章,请依个人实际情况自取:

深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目

一文了解各种卷积结构原理及优劣

我搭的神经网络不work该怎么办!看看这11条新手最容易犯的错误

一文看懂如何搭建AI应用:10周学会深度学习,还赢下5千美元

深度学习的工作原理

恭喜通过入学测试!

其实,深度学习是机器学习里的一个分支,让我们在给定输入上训练AI预测输出。训练AI需要会用到监督学习和无监督学习。

在这篇文章中,我们通过构建一个机票价格预测工具了解机器学习的原理,之后用监督学习的方法训练它。

为了对新手友好,我们排除了往返机票等复杂情况,仅用以下四种输入:

  1. 出发机场
  2. 到达机场
  3. 出发日期
  4. 航线名

神经网络

神经网络好比AI的大脑。

与动物类似,这个AI机票价格预测工具的大脑也有神经元。下图中的圆圈就代表神经元,它们是互相连接的。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

这些神经元被分为三种不同类型的层:

输入层(input layer)

隐藏层(hidden layer)

输出层(output layer)

输入层负责接收输入数据。在这个预测工具中,输入层主要包含四个神经元,分别为起始机场、到达机场、出发日期和航线名。接收到这些信息后,它将输入数据传递到第一个隐藏层。

隐藏层负责对输入数据进行数学运算。如何决定隐藏层的数量、以及每层神经元的数量仍是构建神经网络的挑战。

输出层返回输出数据。在本例中,它会给出预测的机票价格。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

所以,这个工具到底是怎样计算机票价格的呢?答案是深度学习。

每个神经元间靠权重(weight)连接,它决定了输入值的重要性。初始权重是随机设置的。

在预测机票价格时,出发日期是对价格影响较大的因素。所以,出发日期神经元连接的权重会比较大。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

每个神经元都有一个激活函数。不过,因为这篇文章是新手友好向,我们不讲解相关的数学推理。

简单来说,激活函数的目的是将神经元的输出“标准化”。

一旦一组输入数据传递到了神经元的所有层,它将会通过输出层再将输出数据返回。

训练神经网络

走到训练这一步,你又要开始新挑战了,训练难就难在你不仅没有大数据集,而且还很难满足所需的强大计算能力。

想做机票价格预测工具,我们必须找到票价信息的历史数据。由于机场和出发日期的组合有很多种可能,因此这个票价列表信息也非常庞大。

为了训练AI,我们需要给它提供来自数据集的输入,并将AI的输出和数据集中的真实输出做对比。因为还没有经过训练,所以AI的输出还是错误的。

一旦将整个数据集中所有数据输入完成,我们就可以创建一个代价函数,它能显示AI的输出与实际输出的差异。

理想情况下,我们希望代价函数是0,此时AI的输出就等于真实输出。

怎样降低代价函数?

还记得上面章节中提到的权重吗,在减少代价函数的操作中,权重起着至关重要的作用。

改变神经元间的权重可以调整代价函数,我们可以随机改变它们直到代价函数接近0,但这种方法很低效。

在这种情况下,梯度下降(Gradient Descent)闪亮登场。

梯度下降是一种寻找函数最小值的方法,寻找机票价格模型中的代价函数最小值也得用它。

梯度下降的工作原理是在数据集的每次迭代后,以很小的增量改变权重。通过计算确定权重代价函数的导数(或梯度),我们可以看到最小值的方向。

零基础怎样理解深度学习的工作原理?做个票价预测工具就懂了

为了使代价函数最小,我们需要用强大的计算力多次循环访问数据集。

深度学习的魔力就在于,使用梯度下降法更新权重是自动完成的。就这样,我们的机票价格预测小工具就完成了。

想了解更多?

这篇文章只是入门深度学习的第一步,入坑深度学习任重而道远,还有许多其他类型的神经网络需要你了解,比如计算机视觉的卷积神经网络和自然语言处理的递归神经网络等。

如果你想了解深度学习的应用技术,建议你选择一门在线课程。我觉得Andrew Ng的Deeplearning.ai课程不错。

总结

  • 深度学习需要神经网络模仿动物的智力。
  • 一个神经网络中有三种神经元层,即输入层、隐藏层和输出层。
  • 神经元之间的连接与权重有关,它决定了输入值的重要性。
  • 将激活函数应用到数据中,可以使神经元的输出标准化。
  • 为了训练神经网络,你需要一个大数据集。
  • 迭代数据集和对比输出将产生一个代价函数,显示AI的输出与真实输出之间的差异。
  • 数据集的每一次迭代后,神经元之间的权重会通过梯度下降的方式,降低代价函数的值。

想进一步讨论,可以在文章下方留言。

附原文地址:

https://medium.freecodecamp.org/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyone-1aedeca88076

深度学习的工作原理你了解了吗?

0
深度学习主机搭建指南,助你玩转人工智能
上一篇
大讨论:没有大数据,到底能不能用深度学习?
下一篇
评论 (0)

请登录以参与评论。

现在登录
聚合文章
Servicios profesionales Organizaciones
1年前
在Gitee收获近 5k Star,更新后的Vue版RuoYi有哪些新变化?
1年前
vue3.x reactive、effect、computed、watch依赖关系及实现原理
1年前
Vue 3 新特性:在 Composition API 中使用 CSS Modules
1年前
标签
AI AI项目 css docker Drone Elaticsearch es5 es6 Geometry Go gru java Javascript jenkins lstm mysql mysql优化 mysql地理位置索引 mysql索引 mysql规范 mysql设计 mysql配置文件 mysql面试题 mysql高可用 nginx Redis redis性能 rnn SpringBoot Tensorflow tensorflow2.0 UI设计 vue vue3.0 vue原理 whistle ZooKeeper 开源项目 抓包工具 日志输出 机器学习 深度学习 神经网络 论文 面试题
相关文章
我收集了12款自动生成器,无聊人士自娱自乐专用
输入一张图,就能让二次元老婆动起来,宛如3D:这全是为了科学啊
使用ONNX+TensorRT部署人脸检测和关键点250fps
基于 Keras 的烟火检测
松鼠乐园

资源整合,创造价值

小伙伴
墨魇博客 无同创意
目录
重大新闻 Centos CSS Docker ES5 ES6 Go Java Javascript Linux Mac MySQL Nginx Redis Springboot Tensorflow Vue Vue2.x从零开始 Windows 书籍推荐 人工智能 前端资源 后端资源 壁纸 开源项目 测试 论文
Copyright © 2018-2022 松鼠乐园. Designed by nicetheme. 浙ICP备15039601号-4
  • 重大新闻
  • Centos
  • CSS
  • Docker
  • ES5
  • ES6
  • Go
  • Java
  • Javascript
  • Linux
  • Mac
  • MySQL
  • Nginx
  • Redis
  • Springboot
  • Tensorflow
  • Vue
  • Vue2.x从零开始
  • Windows
  • 书籍推荐
  • 人工智能
  • 前端资源
  • 后端资源
  • 壁纸
  • 开源项目
  • 测试
  • 论文
热门搜索
  • jetson nano
  • vue
  • java
  • mysql
  • 人工智能
  • 人脸识别
迦娜王
坚持才有希望
1224 文章
35 评论
242 喜欢
  • 0
  • 0
  • Top